Integer Binomial Plan: a Generalization on Factorials and Binomial Coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sum of Binomial Coefficients and Integer Factorization

The combinatorial sum of binomial coe cients  n i r (a) := X k⌘i (mod r) ✓ n k ◆ a k has been studied widely in combinatorial number theory, especially when a = 1 and a = 1. In this paper, we connect it with integer factorization for the first time. More precisely, given a composite n, we prove that for any a coprime to n there exists a modulus r such that the combinatorial sum has a nontrivia...

متن کامل

On the Conditioned Binomial Coefficients

We answer a question on the conditioned binomial coefficients raised in and article of Barlotti and Pannone, thus giving an alternative proof of an extension of Frobenius’ generalization of Sylow’s theorem.

متن کامل

Restricted Weighted Integer Compositions and Extended Binomial Coefficients

We prove a simple relationship between extended binomial coefficients — natural extensions of the well-known binomial coefficients — and weighted restricted integer compositions. Moreover, we give a very useful interpretation of extended binomial coefficients as representing distributions of sums of independent discrete random variables. We apply our results, e.g., to determine the distribution...

متن کامل

On Divisibility concerning Binomial Coefficients

Binomial coefficients arise naturally in combinatorics. Recently the speaker initiated the study of certain divisibility properties of binomial coefficients, and products or sums of binomial coefficients. In this talk we introduce the speaker’s related results and various conjectures. The materials come from the author’s two preprints: 1. Z. W. Sun, Products and sums divisible by central binomi...

متن کامل

On Sums of Binomial Coefficients

In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics Research

سال: 2010

ISSN: 1916-9809,1916-9795

DOI: 10.5539/jmr.v2n3p18